Comparison of Deep Learning Techniques for River Streamflow Forecasting
نویسندگان
چکیده
منابع مشابه
A comparison between neural-network forecasting techniques-case study: river flow forecasting
Estimating the flows of rivers can have significant economic impact, as this can help in agricultural water management and in protection from water shortages and possible flood damage. The first goal of this paper is to apply neural networks to the problem of forecasting the flow of the River Nile in Egypt. The second goal of the paper is to utilize the time series as a benchmark to compare bet...
متن کاملNeural network streamflow forecasting
Classification of heterogeneous precipitation fields for the assessment and possible improvement of lumped neural network models for streamflow forecasts N. Lauzon, F. Anctil, and C. W. Baxter Golder Associates, Calgary, Canada Département de génie civil, Pavillon Pouliot, Université Laval, Québec, G1K 7P4, Canada HYDRANNT Consulting Inc., Port Coquitlam, Canada Received: 20 December 2005 – Acc...
متن کاملImproving Stock Return Forecasting by Deep Learning Algorithm
Improving return forecasting is very important for both investors and researchers in financial markets. In this study we try to aim this object by two new methods. First, instead of using traditional variable, gold prices have been used as predictor and compare the results with Goyal's variables. Second, unlike previous researches new machine learning algorithm called Deep learning (DP) has bee...
متن کاملtechnical and legal parameters for determination of river boundary,( case study haraz river)
چکیده با توسعه شهر نشینی و دخل و تصرف غیر مجاز در حریم رودخانه ها خسارات زیادی به رودخانه و محیط زیست اطراف آن وارده می شود. در حال حاضر بر اساس آئین نامه اصلاح شده بستر و حریم رودخانه ها، حریم کمی رودخانه که بلافاصله پس از بستر قرار می گیرد از 1 تا20 متر از منتهی الیه طرفین بستر رودخانه تعیین، که مقدار دقیق آن در هر بازه از رودخانه مشخص نیست. در کشورهای دیگر روشهای متفاوتی من جمله: درصد ریسک...
15 صفحه اولDeep Learning for Real Time Crime Forecasting
Accurate real time crime prediction is a fundamental issue for public safety, but remains a challenging problem for the scientific community. Crime occurrences depend on many complex factors. Compared to many predictable events, crime is sparse. At different spatiotemporal scales, crime distributions display dramatically different patterns. These distributions are of very low regularity in both...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2021
ISSN: 2169-3536
DOI: 10.1109/access.2021.3077703